
ECE 150 Fundamentals of ProgrammingECE 150 Fundamentals of Programming

Douglas Wilhelm Harder, M.Math.

Prof. Hiren Patel, Ph.D.

hiren.patel@uwaterloo.ca dwharder@uwaterloo.ca

© 2018 by Douglas Wilhelm Harder and Hiren Patel.

Some rights reserved.

Douglas Wilhelm Harder, M.Math.

Prof. Hiren Patel, Ph.D.

hiren.patel@uwaterloo.ca dwharder@uwaterloo.ca

© 2018 by Douglas Wilhelm Harder and Hiren Patel.

Some rights reserved.

Inner product

2
Inner productInner product

Outline

• In this lesson, we will:

– Review the inner product

– Implement it in C++

– Consider how to generalize the ranges

– Consider how to generalize the functions

3
Inner productInner product

Introduction

• In linear algebra,
you have already seen the inner product of two vectors:

– The sum of the pairwise products of the entries

– We could implement this in C++ for arguments that are arrays

4
Inner productInner product

Implementing the inner product

• For example,
double inner_product(double array1[],

double array2[],

std::size_t capacity) {

double result{ 0.0 };

for (std::size_t k{0}; k < capacity; ++k) {

result += array1[k]*array2[k];

}

return result;

}

5
Inner productInner product

Generalizing the range

• We could, however, allow the inner product to be taken
along arbitrary ranges of the arrays:
double inner_product(

double array1[], std::size_t begin1, std::size_t end1,

double array2[], std::size_t begin2

) {

double result{ 0.0 };

for (std::size_t k1{begin1}, k2{begin2}; k1 < end1; ++k1, ++k2) {

result += array1[k1]*array2[k2];

}

return result;

}
If will assume array2[k2] is defined
for the same width as for array1

6
Inner productInner product

Generalizing the operations

• Suppose, however, we wanted a different pair-wise operation,
and a different means of collating the information from these results

double inner_product(

double array1[], std::size_t begin1, std::size_t end1,

double array2[], std::size_t begin2

) {

double result{ 0.0 };

for (std::size_t k1{begin1}, k2{begin2}; k1 < end1; ++k1, ++k2) {

result += array1[k1]*array2[k2];

}

return result;

}

– Recall, however, that the choice of using pairwise multiplication
and summing the results is arbitrary

7
Inner productInner product

Generalizing the operations

• We could let the user pass two bivariate functions
double sum(double x, double y) {

return x + y;

}

double product(double x, double y) {

return x*y;

}

8
Inner productInner product

Generalizing the operations

• We would then call these functions:
double inner_product(

double array1[], std::size_t begin1, std::size_t end1,

double array2[], std::size_t begin2,

std::function<double(double, double)> sum,

std::function<double(double, double)> product

) {

double result{ 0.0 };

for (std::size_t k1{begin1}, k2{begin2}; k1 < end1; ++k1, ++k2) {

result = sum(result, product(array1[k1], array2[k2]));

}

return result;

}

9
Inner productInner product

Generalizing the operations

• We’d probably want an initial value, too:
double inner_product(

double array1[], std::size_t begin1, std::size_t end1,

double array2[], std::size_t begin2,

double x0,

std::function<double(double, double)> sum,

std::function<double(double, double)> product

) {

double result{ x0 };

for (std::size_t k1{begin1}, k2{begin2}; k1 < end1; ++k1, ++k2) {

result = sum(result, product(array1[k1], array2[k2]));

}

return result;

}

10
Inner productInner product

Example 1

• Now, to call the inner product, we would use
int main() {

std::size_t N{ 5 };

double vector1[N]{ 3.2, -5.4, 1.9, 8.6, 0.7 };

double vector2[N]{ 6.5, 2.0, 7.1, -4.3, -9.8 };

std::cout << inner_product(vector1, 0, N, vector2, 0, 0.0,

sum, product) << std::endl;

return 0;

}

double sum(double x, double y) {

return x + y;

}

double product(double x, double y) {

return x*y;

}

11
Inner productInner product

Example 2

• What does this code do?
int main() {

std::size_t N{ 5 };

double vector1[N]{ -0.3, -0.2, -0.1, 0.0, 0.1 };

double vector2[N]{ 0.9, 0.4, 0.1, 0.0, 0.1 };

std::cout << inner_product(vector1, 0, N, vector2, 0, 0.0,

sum, equals) << std::endl;

return 0;

}

double sum(double x, double y) {

return x + y;

}

double equals(double x, double y) {

return (x == y);

}

12
Inner productInner product

Example 3

• What does this code do?
int main() {

std::size_t N{ 5 };

double vector1[N]{ -0.3, -0.2, -0.1, 0.0, 0.1 };

double vector2[N]{ 0.9, 0.4, 0.1, 0.0, 0.1 };

std::cout << inner_product(vector1, 0, N, vector2, 0,

-std::numeric_limits<double>::infinity(),

max, abs_sum) << std::endl;

return 0;

}

double max(double x, double y) {

if (x >= y) {

return x;

} else {

return y;

}

}

double abs_sum(double x, double y) {

return std::abs(x) + std::abs(y);

}

13
Inner productInner product

The standard library

• In the standard library, there is a

std::inner_product(…)

in the header

#include <numeric>

– Again, despite it appearing there are many function evaluations,
a good compiler will eliminate these and simply inline these operations

– Rather than passing an array pointer and indices,
you pass the addresses of array[begin] and array[end]

14
Inner productInner product

Summary

• Following this lesson, you now:

– Have reviewed the inner product

– Have seen an implementation

– Know how to generalizing the ranges

– Understand how to generalize the operations and use this

15
Inner productInner product

References

[1] https://www.cplusplus.com/reference/numeric/inner_product/

[2] https://en.cppreference.com/w/cpp/algorithm/inner_product

16
Inner productInner product

Colophon

These slides were prepared using the Georgia typeface. Mathematical
equations use Times New Roman, and source code is presented using
Consolas.

The photographs of lilacs in bloom appearing on the title slide and
accenting the top of each other slide were taken at the Royal Botanical
Gardens on May 27, 2018 by Douglas Wilhelm Harder. Please see

https://www.rbg.ca/

for more information.

17
Inner productInner product

Disclaimer

These slides are provided for the ECE 150 Fundamentals of
Programming course taught at the University of Waterloo. The
material in it reflects the authors’ best judgment in light of the
information available to them at the time of preparation. Any reliance
on these course slides by any party for any other purpose are the
responsibility of such parties. The authors accept no responsibility for
damages, if any, suffered by any party as a result of decisions made or
actions based on these course slides for any other purpose than that for
which it was intended.

